You are viewing the site in preview mode

Skip to main content

Table 7 Hyperparameters for machine learning models using BayesSearchCV

From: Applying machine learning to high-dimensional proteomics datasets for the identification of Alzheimer’s disease biomarkers

Model

Hyperparameter

Value

XGBoost

eta

max_depth

n_jobs

n_estimators

objective

num_classes

Real(0.1, 0.5)

Integer(1, 20)

-1

Integer(50, 500)

multi:softmax

3

Logistic Regression

penalty

C

solver

multi_class

max_iter

n_jobs

l1_ratio

elasticnet

Real(0.000001, 100)

saga

multinomial

Integer(1000, 12000)

-1

Real(0, 1)

Random Forest

n_estimators

max_depth

n_jobs

min_samples_leaf

Integer(5, 500)

Integer(2, 50)

-1

Integer(1, 5)

  1. This table lists the hyperparameter ranges for each machine learning model optimized with BayesSearchCV. Tuning options for XGBoost, Logistic Regression, and Random Forest use specific values or ranges (e.g., Real, Integer) to define search spaces, improving model performance by exploring various parameter combinations