You are viewing the site in preview mode

Skip to main content

Table 9 Performance of machine learning models on protein ventricular data for Tasks A1, B1, and B2

From: Applying machine learning to high-dimensional proteomics datasets for the identification of Alzheimer’s disease biomarkers

 

Accuracy

\(F_1\)-score

AUC

MCC

Task A1

   

 XGB

0.76 (± 0.015)

0.31 (± 0.11)

0.70 (± 0.05)

0.17 (± 0.10)

 LR

0.75 (± 0.03)

0.33 (± 0.15)

0.73 (± 0.06)

0.18 (± 0.16)

 RF

0.75 (± 0.03)

0.19 (± 0.07)

0.71 (± 0.05)

0.07 (± 0.09)

 Soft Ensemble

0.76 (± 0.02)

0.28 (± 0.09)

0.73 (± 0.04)

0.14 (± 0.09)

 Hard Ensemble

0.77 (± 0.03)

0.28 (± 0.10)

0.73 (± 0.04)

0.15 (± 0.10)

Task B1

 XGB

0.77 (\(\pm 0.04\))

0.35 (\(\pm 0.11\))

0.74 (\(\pm 0.07\))

0.21 (\(\pm 0.13\))

 LR

0.77 (± 0.03)

0.37 (± 0.12)

0.66 (± 0.07)

0.23 (± 0.13)

 RF

0.79 (± 0.03)

0.39 (± 0.11)

0.74 (± 0.07)

0.27 (± 0.12)

 Soft ensemble

0.78 (± 0.04)

0.37 (± 0.13)

0.73 (± 0.07)

0.23 (± 0.14)

 Hard ensemble

0.78 (± 0.04)

0.35 (± 0.13)

0.73 (± 0.07)

0.23 (± 0.15)

Task B2

 XGB

0.78 (± 0.03)

0.53 (± 0.07)

0.81 (± 0.05)

0.39 (± 0.09)

 LR

0.77 (± 0.03)

0.49 (± 0.07)

0.80 (± 0.05)

0.34 (± 0.07)

 RF

0.79 (± 0.03)

0.51 (± 0.07)

0.81 (± 0.04)

0.38 (± 0.09)

 Soft ensemble

0.79 (± 0.04)

0.54 (± 0.07)

0.82 (± 0.04)

0.41 (± 0.10)

 Hard ensemble

0.79 (± 0.03)

0.54 (± 0.07)

0.82 (± 0.04)

0.41 (± 0.09)

  1. This table shows the predictive performance of the best models on protein ventricular data across tasks A1, B1, and B2. Metrics reported include accuracy, \(F_1\)-score, AUC, and MCC, each with a 95% confidence interval. Results compare individual models (XGBoost, Logistic Regression, Random Forest) and ensemble methods (Soft and Hard Ensembles), highlighting variations in predictive accuracy and robustness across tasks