You are viewing the site in preview mode

Skip to main content

Table 2 Reactions of glucose metabolism that produce or consume water, NADH, FADH2, or ATP/GTP

From: A budget for brain metabolic water production by glucose catabolism during rest, rises in activity and sleep

Enzyme

Reaction

H2O/reaction

H2O/Glc

ATP or GTP/Glc

NADH or FADH2/Glc

A. Glycolysis

Glc → 2 Pyr

    

Hexokinase

Glc + ATP → Glc-6P + ADP

  

 − 1

 

Phosphoglucose isomerase

Glc-6P ↔ Fru-6P

    

Phosphofructokinase

Fru-6P + ATP → Fru-1,6P2 + ADP

  

 − 1

 

Aldolase

Fru-1,6P2 ↔ Gal-3P + DHAP

    

Triosephosphate isomerase

Gal-3P ↔ DHAP

    

Glyceraldehyde 3-P dehydrogenasea

Gal-3P + Pia + NAD+  ↔ 1,3-bisphosphoglycerate + NADH + H+

0a

0 a

 

 + 2

Phosphoglycerate kinasea

1,3-bisphosphoglycerate + ADP ↔ 3P-glycerate + ATP

  

 + 2

 

Phosphoglycerate mutase

3P-glycerate ↔ 2P-glycerate

    

Enolase

2P-glycerate ↔ PEP + H2O

 + 1

 + 2

  

Pyruvate kinasea

PEP + ADP → Pyr + ATP

  

 + 2

 

Malate-Aspartate shuttleb

(2NADH + 2H+)cytosol → (2NADH + 2H+)mitochondria to enter electron transport chain

    
 

Net from 1 Glc → 2 Pyrb

(1 Pyr + NADH + H+  → lactate + NAD+)b

 + 1

(+ 1)

 + 2 a

(+ 2)

 + 2

(+ 2)

 + 2

(0) b

B. Citric acid (TCA) cycle

Pyr → 3 CO2

    

Pyruvate dehydrogenase

Pyr + CoASH + NAD+  → Acetyl CoA + CO2 + NADH + H+

   

 + 2

Citrate synthase

Acetyl CoA + OAA + H2O ↔ citrate + CoASH

 − 1

 − 2

  

Aconitase

Citrate ↔ isocitrate

    

Isocitrate dehydrogenase

Isocitrate + NAD+  → αKG + CO2 + NADH + H+

   

 + 2

αKG dehydrogenase

αKG + NAD+  + CoASH → Succinyl CoA + CO2 + NADH + H+

   

 + 2

Succinyl CoA synthetase a

Succinyl CoA + Pia + GDP → Succinate + GTP + CoASH

0 a

0 a

 + 2 GTP

 

Succinate dehydrogenase

Succinate + FAD ↔ fumarate + FADH2

   

 + 2FADH2

Fumarase

Fumarate + H2O ↔ L-malate

 − 1

 − 2

  

NAD-L-malate dehydrogenase

L-Malate + NAD+  ↔ OAA + NADH + H+

   

 + 2

 

Net from 1 Glc via glycolysis + TCA cycle

 − 1

 − 2a

 + 4

10 NADH + 2 FADH2

C. Electron transport Water produced from transfer of electrons from NADH and FADH2 to O2 via Complexes I to IV along with pumping H+ from the matrix to IMS (17)

NADH + H+  → 2 e− + NAD+ (Complex I)

    

    ~ 10 H+matrix → 10 H+IMS per 2e− through Complex I to IV

    

 10 NADH + 10 H+ per Glc

    

FADH2 → 2e− + FAD (Complex II)

    

    ~ 6 H+matrix → 6 H+IMS per 2e− through Complex II to IV

    

 2 FADH2 per Glc

    

2 e− + ½ O2 + 2 H+  → H2O (Complex IV)

    

    ~ 2 H+matrix → 2 H+IMS per 2 e− though Complex IV

    

Net: ~ 10 × 10 H+matrix + ~ 6 × 2 H+matrix → 112 H+IMS

    

Net: 6 O2 + 24 H+  → 12 H2O

 

+ 12

  

D. ATP synthase Dissipation of the IMS-matrix H+ gradient formed during electron transport is used by proton-translocating ATP synthase (Complex V) to drive synthesis of ATP + H2O (17). H+/Pi transport into the mitochondria consumes 1 H+ per Pi and, with proton leakage, reduces the stoichiometry of H+ consumed per ATP synthesized (17)

30 H+IMS + 30 PiIMS → 30 H+matrix + 30 Pimatrix (symport)

    

nH+IMS + ADP + Pi → ATP + H2O + nH+matrix (ATP synthase)

    

n ≈ P/O ratio [34]

    

 ~ 2.5 ATP/NADH × 10 NADH/Glc = 25 ATP + 25 H2O

 

 + 25

 + 25

 

 ~ 1.5 ATP/FADH2 × 2 FADH2/Glc = 3 ATP + 3 H2O

 

+ 3

+ 3

 

Net: 28 ATP + 28 H2O

    

Total of ~ 112 H+ translocated minus 30 H+ for Pi transport into matrix for ATP and GTP synthesis minus nH+ for proton leaks = < ~ 82 H+ to generate 28 ATP by ATP synthase. 82/28 = ~ 2.9 H+ pumped /ATP by ignoring proton leak and consumption of H+ for other processes that together reduce the P/O ratios to ~ 2.5 and ~ 1.5. For details, see discussions in references [17, 34]

    

E. Summary: Net water from metabolism of 1 Glc

Glycolysis + TCA cycle + electron transport + oxidative phosphorylation via ATP synthase: 1 Glc + 32 ADP + 32 Pi + 6 O2 → 6 CO2 + 38 H2O + 32 ATP

Glycolysis + TCA cycle + electron transport:

1 Glc (C6H12O6) + 6 O2 → 6 CO2 + 10 H2O

Calorimetry (mass balance):

1 Glc (C6H12O6) + 6 O2 → 6 CO2 + 6 H2O

 

 + 38

 + 32

 

F. Pentose phosphate pathway

Production of NADPH for management of oxidative stress and for reductive biosynthesis and ribose-5P for nucleotide biosynthesis

3 Glc-6P + 6 NADP+  + 3 H2O → 6 NADPH + 6 H+  + 3 CO2 + 2 Fru-6-P + 1 Glyceraldehyde-3P (Gal-3P)

    

Glc-6P dehydrogenase

Glc-6P + 2NADP+  + H2O → 2 NADPH + 2 H+  + CO2 + ribulose-5P (Ru-5P)

 + 1

 + 1

 

 NADPH

Ribulose-5P isomerase

Ru-5P ↔ ribose-5P (R-5P)

    

Ribulose-5P epimerase

Ru-5P ↔ Xyulose-5P (Xu-5P)

    

Transketolase

R-5P + Xu-5P ↔ sedoheptulose-7-P (S-7P) + Gal-3P

C5 + C5 ↔ C7 + C3 (Subscripts denote the number of carbons (C))

    

Transaldolase

S7P + Gal-3P ↔ Fru-6P + erythrose-4P (E-4P)

C7 + C3 ↔ C6 + C4

    

Transketolase

E-4P + Xu-5P ↔ Fru-6-P + GAP → glycolytic pathway

C5 + C4 ↔ C6 + C3

    
 

Net: per 3 Glc via the PPP

 + 1

 + 3

 

 + 6

G. Glycogen

Glucose storage and mobilization mainly in astrocytes

Synthesis: Glc-6P ↔ Glc-1P

Glc-1P + (Glycogen)n residues → (Glycogen)n+1

Degradation: (Glycogen)n residues + Pi → (Glycogen)n-1 + Glc-1P

Glc-1P ↔ Glc-6P → glycolytic pathway

    

Phosphoglucomutase

Glc-6P ↔ Glc-1P

    

UDP-Glc pyrophosphorylase

Inorganic pyrophosphatase

UTP + Glc-1P ↔ UDP-Glc + PPi (pyrophosphate)

PPi + H2O → 2 Pi

0

 + 1

0

 + 1

-1

 

Glycogen synthase

UDP-Glc + (Glycogen)n residues → (Glycogen)n+1 + UDP

    

Glycogen phosphorylase

(Glycogen)n + Pi → (Glycogen)n-1 + Glc-1P (1 glucosyl unit)

    

Phosphoglucomutase

Glc-1P ↔ Glc-6P

    
 

Net for synthesis of 1 glucosyl unit from Glc-6-P

Net for degradation of 1 glucosyl unit to Glc-6-P

 + 1

0

 + 1

0

-1

0

 

1 Glycogen glucosyl unit → glycolytic pathway → 2 Lactate

 + 1

 + 2

 + 3

0

1 Glycogen glucosyl unit → oxidative pathway → 3CO2

 

 + 38

 + 33

 
  1. Abbreviations are the same as for Fig. 8, with the following additions: Glc-1P, glucose-1-phosphate; PPi, pyrophosphate; IMS, intermembrane space between the inner and outer mitochondrial membranes. (Related to Figs. 1, 8)
  2. The bolded text summarizes the net results for each pathway and identifies important items.
  3. aSubstrate-level phosphorylation involves the direct transfer of a phosphoryl group to ADP or GDP from a ‘high-energy’ compound (e.g., 1,3-bisphosphoglycerate, phosphoenolpyruvate, succinyl CoA) without the involvement of a water molecule, as is the case of oxidative phosphorylation and ATP synthase (ADP + Pi → ATP + H2O). Note that hexokinase, phosphofructokinase, adenylate kinase, protein kinase A, and other enzymes also involve direct transfer of the phosphoryl group from ATP, without involvement of a water molecule in the mechanism, contrasting ATP hydrolysis (ATP + H2O → ADP + Pi) (See main text for more details)
  4. bUnder resting, awake, non-stimulated conditions ~ 90–95% of the glucose is oxidized, and the reducing equivalents produced by glycolysis in the cytosol are transferred to the mitochondria by the malate-aspartate shuttle where they enter the electron transport chain. A small fraction of the Pyr is converted to lactate by lactate dehydrogenase thereby regenerating NAD+