Enzyme | Reaction | H2O/reaction | H2O/Glc | ATP or GTP/Glc | NADH or FADH2/Glc |
---|---|---|---|---|---|
A. Glycolysis | Glc → 2 Pyr |  |  |  |  |
Hexokinase | Glc + ATP → Glc-6P + ADP |  |  |  − 1 |  |
Phosphoglucose isomerase | Glc-6P ↔ Fru-6P |  |  |  |  |
Phosphofructokinase | Fru-6P + ATP → Fru-1,6P2 + ADP |  |  |  − 1 |  |
Aldolase | Fru-1,6P2 ↔ Gal-3P + DHAP |  |  |  |  |
Triosephosphate isomerase | Gal-3P ↔ DHAP |  |  |  |  |
Glyceraldehyde 3-P dehydrogenasea | Gal-3P + Pia + NAD+  ↔ 1,3-bisphosphoglycerate + NADH + H+ | 0a | 0 a |  |  + 2 |
Phosphoglycerate kinasea | 1,3-bisphosphoglycerate + ADP ↔ 3P-glycerate + ATP |  |  |  + 2 |  |
Phosphoglycerate mutase | 3P-glycerate ↔ 2P-glycerate |  |  |  |  |
Enolase | 2P-glycerate ↔ PEP + H2O |  + 1 |  + 2 |  |  |
Pyruvate kinasea | PEP + ADP → Pyr + ATP |  |  |  + 2 |  |
Malate-Aspartate shuttleb | (2NADH + 2H+)cytosol → (2NADH + 2H+)mitochondria to enter electron transport chain |  |  |  |  |
 | Net from 1 Glc → 2 Pyrb (1 Pyr + NADH + H+  → lactate + NAD+)b |  + 1 (+ 1) |  + 2 a (+ 2) |  + 2 (+ 2) |  + 2 (0) b |
B. Citric acid (TCA) cycle | Pyr → 3 CO2 |  |  |  |  |
Pyruvate dehydrogenase | Pyr + CoASH + NAD+  → Acetyl CoA + CO2 + NADH + H+ |  |  |  |  + 2 |
Citrate synthase | Acetyl CoA + OAA + H2O ↔ citrate + CoASH |  − 1 |  − 2 |  |  |
Aconitase | Citrate ↔ isocitrate |  |  |  |  |
Isocitrate dehydrogenase | Isocitrate + NAD+  → αKG + CO2 + NADH + H+ |  |  |  |  + 2 |
αKG dehydrogenase | αKG + NAD+  + CoASH → Succinyl CoA + CO2 + NADH + H+ |  |  |  |  + 2 |
Succinyl CoA synthetase a | Succinyl CoA + Pia + GDP → Succinate + GTP + CoASH | 0 a | 0 a |  + 2 GTP |  |
Succinate dehydrogenase | Succinate + FAD ↔ fumarate + FADH2 |  |  |  |  + 2FADH2 |
Fumarase | Fumarate + H2O ↔ L-malate |  − 1 |  − 2 |  |  |
NAD-L-malate dehydrogenase | L-Malate + NAD+  ↔ OAA + NADH + H+ |  |  |  |  + 2 |
 | Net from 1 Glc via glycolysis + TCA cycle |  − 1 |  − 2a |  + 4 | 10 NADH + 2 FADH2 |
C. Electron transport Water produced from transfer of electrons from NADH and FADH2 to O2 via Complexes I to IV along with pumping H+ from the matrix to IMS (17) | NADH + H+  → 2 e− + NAD+ (Complex I) |  |  |  |  |
    ~ 10 H+matrix → 10 H+IMS per 2e− through Complex I to IV |  |  |  |  | |
 10 NADH + 10 H+ per Glc |  |  |  |  | |
FADH2 → 2e− + FAD (Complex II) |  |  |  |  | |
    ~ 6 H+matrix → 6 H+IMS per 2e− through Complex II to IV |  |  |  |  | |
 2 FADH2 per Glc |  |  |  |  | |
2 e− + ½ O2 + 2 H+  → H2O (Complex IV) |  |  |  |  | |
    ~ 2 H+matrix → 2 H+IMS per 2 e− though Complex IV |  |  |  |  | |
Net: ~ 10 × 10 H+matrix + ~ 6 × 2 H+matrix → 112 H+IMS |  |  |  |  | |
Net: 6 O2 + 24 H+  → 12 H2O |  | + 12 |  |  | |
D. ATP synthase Dissipation of the IMS-matrix H+ gradient formed during electron transport is used by proton-translocating ATP synthase (Complex V) to drive synthesis of ATP + H2O (17). H+/Pi transport into the mitochondria consumes 1 H+ per Pi and, with proton leakage, reduces the stoichiometry of H+ consumed per ATP synthesized (17) | 30 H+IMS + 30 PiIMS → 30 H+matrix + 30 Pimatrix (symport) |  |  |  |  |
nH+IMS + ADP + Pi → ATP + H2O + nH+matrix (ATP synthase) |  |  |  |  | |
n ≈ P/O ratio [34] |  |  |  |  | |
 ~ 2.5 ATP/NADH × 10 NADH/Glc = 25 ATP + 25 H2O |  |  + 25 |  + 25 |  | |
 ~ 1.5 ATP/FADH2 × 2 FADH2/Glc = 3 ATP + 3 H2O |  | + 3 | + 3 |  | |
Net: 28 ATP + 28 H2O |  |  |  |  | |
Total of ~ 112 H+ translocated minus 30 H+ for Pi transport into matrix for ATP and GTP synthesis minus nH+ for proton leaks = < ~ 82 H+ to generate 28 ATP by ATP synthase. 82/28 = ~ 2.9 H+ pumped /ATP by ignoring proton leak and consumption of H+ for other processes that together reduce the P/O ratios to ~ 2.5 and ~ 1.5. For details, see discussions in references [17, 34] |  |  |  |  | |
E. Summary: Net water from metabolism of 1 Glc | Glycolysis + TCA cycle + electron transport + oxidative phosphorylation via ATP synthase: 1 Glc + 32 ADP + 32 Pi + 6 O2 → 6 CO2 + 38 H2O + 32 ATP Glycolysis + TCA cycle + electron transport: 1 Glc (C6H12O6) + 6 O2 → 6 CO2 + 10 H2O Calorimetry (mass balance): 1 Glc (C6H12O6) + 6 O2 → 6 CO2 + 6 H2O |  |  + 38 |  + 32 |  |
F. Pentose phosphate pathway Production of NADPH for management of oxidative stress and for reductive biosynthesis and ribose-5P for nucleotide biosynthesis | 3 Glc-6P + 6 NADP+  + 3 H2O → 6 NADPH + 6 H+  + 3 CO2 + 2 Fru-6-P + 1 Glyceraldehyde-3P (Gal-3P) |  |  |  |  |
Glc-6P dehydrogenase | Glc-6P + 2NADP+  + H2O → 2 NADPH + 2 H+  + CO2 + ribulose-5P (Ru-5P) |  + 1 |  + 1 |  |  NADPH |
Ribulose-5P isomerase | Ru-5P ↔ ribose-5P (R-5P) |  |  |  |  |
Ribulose-5P epimerase | Ru-5P ↔ Xyulose-5P (Xu-5P) |  |  |  |  |
Transketolase | R-5P + Xu-5P ↔ sedoheptulose-7-P (S-7P) + Gal-3P C5 + C5 ↔ C7 + C3 (Subscripts denote the number of carbons (C)) |  |  |  |  |
Transaldolase | S7P + Gal-3P ↔ Fru-6P + erythrose-4P (E-4P) C7 + C3 ↔ C6 + C4 |  |  |  |  |
Transketolase | E-4P + Xu-5P ↔ Fru-6-P + GAP → glycolytic pathway C5 + C4 ↔ C6 + C3 |  |  |  |  |
 | Net: per 3 Glc via the PPP |  + 1 |  + 3 |  |  + 6 |
G. Glycogen Glucose storage and mobilization mainly in astrocytes | Synthesis: Glc-6P ↔ Glc-1P Glc-1P + (Glycogen)n residues → (Glycogen)n+1 Degradation: (Glycogen)n residues + Pi → (Glycogen)n-1 + Glc-1P Glc-1P ↔ Glc-6P → glycolytic pathway |  |  |  |  |
Phosphoglucomutase | Glc-6P ↔ Glc-1P |  |  |  |  |
UDP-Glc pyrophosphorylase Inorganic pyrophosphatase | UTP + Glc-1P ↔ UDP-Glc + PPi (pyrophosphate) PPi + H2O → 2 Pi | 0  + 1 | 0  + 1 | -1 |  |
Glycogen synthase | UDP-Glc + (Glycogen)n residues → (Glycogen)n+1 + UDP |  |  |  |  |
Glycogen phosphorylase | (Glycogen)n + Pi → (Glycogen)n-1 + Glc-1P (1 glucosyl unit) |  |  |  |  |
Phosphoglucomutase | Glc-1P ↔ Glc-6P |  |  |  |  |
 | Net for synthesis of 1 glucosyl unit from Glc-6-P Net for degradation of 1 glucosyl unit to Glc-6-P |  + 1 0 |  + 1 0 | -1 0 |  |
1 Glycogen glucosyl unit → glycolytic pathway → 2 Lactate |  + 1 |  + 2 |  + 3 | 0 | |
1 Glycogen glucosyl unit → oxidative pathway → 3CO2 |  |  + 38 |  + 33 |  |