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Early postnatal microglial ablation 
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effects on brain development and in neonatal 
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Abstract 

Background  Neonatal hydrocephalus is a congenital abnormality resulting in an inflammatory response and 
microglial cell activation both clinically and in animal models. Previously, we reported a mutation in a motile cilia 
gene, Ccdc39 that develops neonatal progressive hydrocephalus (prh) with inflammatory microglia. We discovered 
significantly increased amoeboid-shaped activated microglia in periventricular white matter edema, reduced mature 
homeostatic microglia in grey matter, and reduced myelination in the prh model. Recently, the role of microglia in 
animal models of adult brain disorders was examined using cell type-specific ablation by colony-stimulating factor-1 
receptor (CSF1R) inhibitor, however, little information exists regarding the role of microglia in neonatal brain disorders 
such as hydrocephalus. Therefore, we aim to see if ablating pro-inflammatory microglia, and thus suppressing the 
inflammatory response, in a neonatal hydrocephalic mouse line could have beneficial effects.

Methods  In this study, Plexxikon 5622 (PLX5622), a CSF1R inhibitor, was subcutaneously administered to wild-type 
(WT) and prh mutant mice daily from postnatal day (P) 3 to P7. MRI-estimated brain volume was compared with 
untreated WT and prh mutants P7-9 and immunohistochemistry of the brain sections was performed at P8 and 
P18-21.

Results  PLX5622 injections successfully ablated IBA1-positive microglia in both the WT and prh mutants at P8. Of 
the microglia that are resistant to PLX5622 treatment, there was a higher percentage of amoeboid-shaped microglia, 
identified by morphology with retracted processes. In PLX-treated prh mutants, there was increased ventriculomegaly 
and no change in the total brain volume was observed. Also, the PLX5622 treatment significantly reduced myelina-
tion in WT mice at P8, although this was recovered after full microglia repopulation by P20. Microglia repopulation in 
the mutants worsened hypomyelination at P20.

Conclusions  Microglia ablation in the neonatal hydrocephalic brain does not improve white matter edema, and 
actually worsens ventricular enlargement and hypomyelination, suggesting critical functions of homeostatic ramified 
microglia to better improve brain development with neonatal hydrocephalus. Future studies with detailed exami-
nation of microglial development and status may provide a clarification of the need for microglia in neonatal brain 
development.
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Introduction
Pediatric hydrocephalus is an enduring pathological 
condition that often requires cerebrospinal fluid (CSF) 
diversion surgery and significantly impacts neurocogni-
tive and motor development. It is the most common dis-
ease process treated by pediatric neurosurgeons [1] and 
may be caused by intraventricular hemorrhage, spina 
bifida, brain infections, choroid plexus papilloma, aque-
ductal stenosis, or genetic mutations [2–5]. Congenital 
hydrocephalus, diagnosed in utero or newborns, affects 
6 children per 10,000 live births [6, 7]. Congenital com-
municating hydrocephalus, caused by an imbalance of 
CSF volume control between both overproduction and 
malabsorption, makes up 8% of the common causes in 
the neonatal and infant populations according to North 
American centers within the Hydrocephalus Clinical 
Research Network (HCRN) [8, 9]. Atrophy and gliosis to 
periventricular white matter, including the corpus callo-
sum, fimbria, and corticospinal tract are often described 
and thought to be primarily due to ventricular dilation, 
responsible in part, for neurocognitive and motor defi-
cits [10]. Surgical diversion of CSF is the most common 
treatment for this condition; however, the cellular basis 
remains unsolved despite the effects leading to a lifetime 
of neurocognitive and neuropsychological problems in 
surgically treated patients. Also, about half of the chil-
dren require surgical shunt revisions within 2 years [11, 
12]. Hence, the immense need to develop early medical 
intervention persists, either in combination with surgi-
cal diversion or on its own, to potentially avert these life-
long adverse symptoms.

Diffusion tensor imaging studies have shown that 
disturbed periventricular white matter integrity is 
associated with neurobehavioral deficits in pediatric 
hydrocephalus [13, 14] and that shunting gradually 
improves these deficits over time [15, 16]. The reduc-
tion in myelination and capillary densities [17, 18], as 
well as extracellular edema and macrophages [19, 20] 
are documented in earlier studies in autopsies or cer-
ebral biopsies performed in pediatric patients with 
severe hydrocephalus [21]. Phagocytosed myelin was 
noted in symptomatic, but not in asymptomatic hydro-
cephalus patients [10]. Experimental animal models of 
neonatal hydrocephalus have described similar pathol-
ogy in white matter in detail [22–32]. Also, potential 
causal roles of neuroinflammation have been demon-
strated in the progression of hydrocephalus causing 
ependymal cell maturation deficit [33], glial scar forma-
tion [34, 35], or arachnoiditis [36]. Neuroinflammation 

is documented in the form of elevated pro-inflamma-
tory molecules [37–40] which have the potential to 
serve as biomarkers to identify patients at high risk for 
progressive hydrocephalus.

Microglia are resident macrophages of the central 
nervous system (CNS) and are the primary immune 
cells to respond to inflammation [41]. Mature micro-
glia and perivascular macrophages are dependent  on 
the colony-stimulating factor 1 receptor (CSF1R) for 
their survival. Selective  CSF1R inhibitors, including 
PLX3397 [42], PLX5622 [43], and BLZ945 [44], induce 
microglial cell death and eliminate 50–90% of micro-
glia, within 3–7  days of treatment depending on dose 
and the brain area. Microglial ablation with CSF1R 
inhibitors in adult mice did not alter cognitive functions  
[44], rather it shows therapeutic benefits in neurologi-
cal disorder models by preventing  microglial plaque 
formation in Alzheimer [43] or alleviating mechanical 
allodynia [46, 47]. Starting 3 days after the withdrawal 
of CSF1R inhibitors, new microglia begin to proliferate, 
migrate, and fully repopulate the mouse brain within 
7 days [48]. This replacement of microglia  represents 
a clinically feasible [54] and novel approach to tempo-
rally resolve neuroinflammation and improve cognitive 
decline in aging [48] and  behavioral deficits/synaptic 
spine number in neuronal lesion injury [49] in animal 
models.

To investigate the roles of microglia in the patho-
genesis of ventricular dilation and hypomyelination in 
neonatal hydrocephalus, here we evaluated the effects 
of PLX5622, a more potent CSF1R inhibitor than 
PLX3397 [50], in the progressive hydrocephalus (prh) 
mouse mutants [51]. The prh mutation identified within 
coiled-coil domain-containing 39 (Ccdc39) gene causes 
shorter and immotile ependymal cilia and impaired 
brain intraventricular CSF flow, which results in 
severe postnatal hydrocephalus phenotype within the 
first postnatal week [23]. We found pro-inflammatory 
(Ccl2+ , Cd86+) amoeboid-shaped microglia accumu-
lating in the periventricular white matter [22, 24, 52]. 
The inhibition of NF-kB signaling using an anti-inflam-
matory agent, bindarit, significantly ameliorated white 
matter edema, hypomyelination and other neurode-
velopmental deficits in the somatosensory cortex, and 
improved neonatal hind limb motor function of the prh 
mutant [22]. Since the microglia in immature perinatal 
brains have pivotal functions in brain development [48, 
53], in this study we investigated whether the removal 
of pro-inflammatory microglia with PLX5622 could be 



Page 3 of 19Brown et al. Fluids and Barriers of the CNS           (2023) 20:42 	

beneficial for supporting myelination and white matter 
integrity, and potentially improve brain development 
or can induce adverse developmental defects in the prh 
mutant.

Materials and methods
Animal line and mouse weight
The Ccdc39prh allele [51] was maintained on a mixed 
congenic strain background (50% CD-1 background). 
Heterozygous Ccdc39wt/prh males and females were bred 
creating both homozygous Ccdc39 mutant (Ccdc39prh/prh, 
hereafter prh) and wild-type (Ccdc39wt/wt, hereafter WT) 
mice. Untreated control and PLX5622 treated pups were 
weighed (g) on a scale every day from P3 to P20. Mice 
were housed in specific pathogen-free conditions, and all 
animal procedures were approved by the Cincinnati Chil-
dren’s Hospital Medical Center Institutional Animal Care 
and Use Committee.

Drug administration
PLX5622 (MedChemExpress) was dissolved in dimethyl 
sulfoxide (DMSO, Sigma-Aldrich) as aliquoted stock 
solution (50 mg/mL) and stored at -20 °C for up to four 
months. PLX5622 (50 mg/kg) was subcutaneously given 
to WT and prh mutant mice daily from P3 to P7. Mice 
were weighed before injection and the diluted PLX5622 
(25 mg/mL in DMSO) was given using 0.025 mL Hamil-
ton syringe (Hamilton company, 80222) and a 31-gauge, 
12-degree angle, and 13  mm length needle (Hamilton 
company, 7750–22) to support injection accuracy. The 
injection volume ranged from 6–15 μL per animal rela-
tive to the mouse weight.

Immunohistochemistry
P8 brains were quickly collected in phosphate-buffered 
saline (PBS) from prh and WT mice (n = 70) and imme-
diately fixed in 4% paraformaldehyde (PFA) in PBS over-
night at 4℃. P18 -P21 prh and WT mice (n = 24) were 
perfused with ice-cold PBS followed by 4% PFA, and 
the brain samples were fixed in 4% overnight at 4℃. All 
samples were washed with PBS, cryoprotected in 15% 
and 30% sucrose in PBS for one overnight each. From 
the samples immersed and frozen in NEG50 freezing 
medium (Thermo Fisher Scientific), 12 µm-thick sagittal 
cryosections were prepared and dried on slide glasses. 
For immunofluorescence, CTIP2-staining sections were 
permeabilized with 0.3% Triton X-100 (Thermo Fisher 
Scientific) in PBS for 30 min. After blocking in 2% nor-
mal donkey serum/0.25% Triton X-100/PBS for 1  h 
sections were incubated with primary antibodies of anti-
rabbit IBA1 (1:500, Wako, 019–19,741), anti-goat IBA1 
(1:500, Abcam, ab5076), anti-rat CTIP2 (1:1000, Abcam, 
ab183032), anti-rabbit CNPase (1:100, Cell Signaling, 

5664), anti-rat CD86 (1:200, BD Biosciences, 553,689), 
anti-rabbit ApoE (1:250, Abcam, ab183597), or anti-rab-
bit OLIG2 (1:500, Abcam, ab136253), overnight. After 
washing and incubation with fluorophore-conjugated 
secondary antibodies (Thermo Fishers) for 2  h, the sec-
tions were washed and counterstained with DAPI 
(Sigma-Aldrich) for 5 min and mounted with DAPI-Fluo-
romount-G mounting medium (Southern Biotech).

Microscope imaging and quantification
Images were taken with either a Nikon-Ti-E 90i upright 
widefield microscope with a 4×, 10×, or 20× optical 
lens or a confocal laser scanning microscope (Nikon 
A1RGaAsP inverted microscope) at 60×. Fluorescence 
intensity and number of cells were analyzed using the 
counter tool in NIS Elements software (Nikon) for the 
quantification of ApoE+IBA1+ and CD86+ IBA+ double 
-positive cells. The numbers of IBA1+ round amoeboid-
shaped macrophages and ramified-shaped microglia 
were manually counted. For the quantification of CNPase 
signals, images were captured with a 10 × optical lens tile 
scan. We measured CNPase positive areas out of region 
of interest (ROI)s in the body of corpus callosum using 
the General Analysis (GA) tool in NIS Elements software. 
The relative CNPase+ area size per ROI was calculated 
as % and used as myelination rate. OLIG2 positive cells 
density was quantified using the 3 images of the corpus 
callosum per animal taken with 20 × optical lens, and 
OLIG2 and DAPI positive cells were counted using NIS 
automated measurement in GA tool.

Magnetic resonance imaging and quantification
In vivo mouse brain MRI were performed on Biospec 
7 T horizontal MRI system equipped with a 38 mm lin-
ear coil (Bruker Biospin, Billerica, MA). P7-9 mice were 
anesthetized with isoflurane and kept warm with circu-
lating air. Temperature and respiration rate were moni-
tored on physiological monitoring system (Small Animal 
Instruments, Inc. (SAI, NY)). Two respiratory-gated 
three-dimensional (3D) MR images were acquired using 
a fat-suppressed T2-weighted fast spin echo sequence 
(repetition time 1800  ms, echo time 80  ms, matrix 
240 × 112 × 45, field of view 48  mm × 22.4  mm × 18  mm, 
number of echoes 20, echo spacing 10 ms, 1 average) and 
a fluid-sensitive sequence (fast spin echo, repetition time 
2000 ms, echo time 264 ms, matrix 320 × 108 × 80, field of 
view 48  mm × 16.2  mm × 12  mm, number of echoes 60, 
echo spacing 20  ms, 4 averages) for total brain volume 
and ventricular volume measurement, respectively. Each 
series of original DICOM images were reconstructed as 
tiff files in Fiji software and then converted into IMARIS 
files via the IMARIS file converter (Bitplane Scientific 
Software). 3D reconstruction and volume measurements 
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were performed using the Surfaces feature of the IMA-
RIS software (Bitplane Scientific Software); for the total 
brain volume on the T2-weighted images with voxel size: 
x = 0.150 mm, y = 0.148 mm, z = 0.300 mm, with absolute 
intensity thresholding above a range of 0.58 and 2.41, 
and for the ventricular volumes including edematous 
tissue (ventricle+edema) with voxel size: x = 0.150  mm, 
y = 0.148  mm, z = 0.150  mm, with absolute intensity 
thresholding above a range of 0.13 and 0.41. The thresh-
olding values are based on the absolute signal intensity 
of the gray matter. We applied the thresholding level that 
confirmed to clearly define the borders of the brain sur-
face and ventricular surface in slicer view. Parenchyma 
volume (mm3) was obtained by subtracting ventri-
cle + edema volume from total brain volume.

Statistical analysis
All values are expressed as the mean ± standard deviation 
of the mean. Statistical significance of group differences 
between genotype (WT and prh) and drug treatment 
groups (untreated and PLX) were determined using a 
two-way ANOVA with Tukey’s post-hoc test for multiple 
comparisons. Survival data were analyzed using the log-
rank procedure of Kaplan–Meier survival analysis. Body 
weights were analyzed by repeated measures using a 
two-way ANOVA, followed by Tukey’s post hoc test. All 
statistical computations were performed using Graph-
Pad Prism 9, where p < 0.05 was considered statistically 
significant.

Results
PLX5622 successfully ablated neonatal microglia, 
including reactive amoeboid‑shaped microglia in the prh 
mutant
Considering that CSF1R inhibitors are used in clinical tri-
als [54], we first tested the efficacy of PLX5622, a potent 
inhibitor of CSF1R tyrosine kinase activity (KI = 5.9 nM) 
[43] to ablate pro-inflammatory microglia in the early 
postnatal prh mutants. We evaluated the extent of micro-
glial ablation in immunohistochemistry with microglial 
and myeloid cell marker IBA1 in the somatosensory cor-
tex at P8 (Fig.  1A). We quantified microglial density in 
upper cortical layers (II-IV), lower cortical layers (V-VI), 
and white matter separately as the number of microglia 
differs in upper versus lower cortical layers in postnatal 
brains [55]. We found that prh mutants have less micro-
glia in the grey matter relative to WTs as we reported 
previously (Fig. 1, Additional file 1: Table S1) [22]. After 
the PLX5622 treatment, the number of IBA1 + cells in 
the upper cortical layers (II-IV), lower cortical layers 
(V-VI), and white matter were all decreased in both WT 
and prh mutant. The PLX5622 treatment successfully 
ablated ≥ 89% microglia in all three areas above in both 

WT and prh mutants relative to untreated-WT and prh 
mutants, respectively (****p < 0.0001, two-way ANOVA 
followed by Tukey’s test, n = 10–15 in each group, 
Fig. 1B). As previously described [22, 52] pro-inflamma-
tory microglia with a rounded amoeboid-like appearance 
were significantly increased in the untreated-prh mutant 
white matter (Figs.  1C, D, Additional file  1: Table  S1). 
We found that PLX5622 treatment eliminated these 
amoeboid-shaped microglia (~ 95%) in prh mutants, rep-
resented as reduced cell density (****p < 0.0001, Fig. 1D). 
Among the remaining microglia, PLX5622 treatment 
increased the ratio of rounded amoeboid-shaped micro-
glia to total microglia, in both WTs and prh mutants 
(Fig.  1E, Additional file  1: Fig. S1), by removing mature 
microglia with ramified morphology more efficiently. 
There was no change in amoeboid-shaped IBA+ cell den-
sity in WT white matter after PLX5622 (Fig. 1D), indicat-
ing most of these developing microglia in healthy P8 mice 
are less sensitive to PLX5622 than mature homeostatic 
ramified microglia. Taken together, these data indicate, 
early postnatal (P3-P7) systemic injection of PLX5622 
effectively depletes maturing microglia in the neonatal 
brain, while also depleting pro-inflammatory rounded 
amoeboid-shaped microglia found in prh hydrocephalus 
mutants.

Microglia profiling in neonatal hydrocephalus and of those 
which survived PLX5622 treatment
To further characterize microglia, we next evaluated 
the developmental markers of microglia in the presence 
of PLX5622 in WT and prh mutants (Fig.  2). ApoE is 
enriched in early postnatal microglia and injury-responsive 
microglia [56], disease-associated microglia [57, 58], clear-
ance-associated microglia [59], and repopulating microglia 
after microglial ablation [60] and thus represent immature 
microglia in the healthy developing brain and disease-
associated microglia in aging and brain diseases. We eval-
uated the ApoE+ and IBA1+ double-positive cell density 
as ApoE is also expressed in non-microglial cells such as 
astrocytes, choroid plexus epithelial cells, and endothe-
lial cells in the developing mouse brains (http://​zylka​lab.​
org/​datam​ousec​ortex). Neonatal hydrocephalus did not 
change the total density of ApoE+ microglia in white mat-
ter (Fig. 2A, B); however, it was decreased in grey matter 
(Additional file 1: Fig. S2A). Similarly, the ratio of ApoE+ 
microglia out of total IBA1+ cells was increased in white 
matter (Fig.  2C, Additional file  1: Fig. S2B), representing 
the proliferation of immature/disease associated microglia 
in white matter as we reported [22]. We observed, in both 
WT and prh mutants, that PLX5622 treatment decreased 
the ApoE+ microglia density, while inducing an increase 
in relative ratio of ApoE+ cells among microglia (Fig.  2C 
and Additional file 1: Fig. S2B) in white matter, reflecting 

http://zylkalab.org/datamousecortex
http://zylkalab.org/datamousecortex
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a more prevalent ablation of mature (ApoE−) homeostatic 
and pro-inflammatory microglia. It is notable that there 
were no mature microglia that remained after PLX5622 
treatment in the prh mutant’s white matter as 100% of the 
remaining microglia were ApoE+ (Fig. 2C). In grey matter, 
although we found less ApoE+ microglia density (25–250 
cells per mm2, Additional file 1: Fig. S2A) than white mat-
ter in all groups, we found similar increase in ApoE+ ratio 
among microglia in both WT and prh mutant after the 
PLX5622 treatment (19% in untreated and 50% in PLX-
WT, ***p = 0.002 in WT and 20% in untreated and 50% in 
PLX-prh, **p = 0.0015 in prh, respectively, Additional file 1: 
Fig. S2C).

In our previous reports [22, 24, 52], we observed high 
accumulation of activated myeloid cells expressing pro-
inflammatory markers, such as MCP-1, CD68, and CD86 
[61–63] in the periventricular white matter of the prh 
mutant model. Therefore, next, we evaluated the effects 
PLX5622 had on pro-inflammatory microglia using 
CD86, which is consistently regulated in pro-inflam-
matory conditions [64–66] (Fig.  2D-F). We quantified 
it only in white matter as CD86+ microglia were rare in 
grey matter in all experimental groups. As expected, the 
CD86+ microglia density was higher in mutants, and 
PLX5622 treatment removed ~ 98% of CD86 + microglia 
(Fig.  2E) and reduced percentage of CD86+ microglia as 

Fig. 1  PLX5622 successfully ablated microglia in neonatal brains. A Low magnification 10 × images of IBA1 (red) stained in P8 WT and prh brains 
with and without PLX5622 treatment. Arrowheads: ameboid-shaped microglia, arrows: ramified microglia. Dotted lines indicate borders of 
cortical layers II-VI, V-VI, and white matter (WM). LV: lateral ventricle. Scale bar = 100 μm. B IBA1+ microglial densities in cortical layers II-IV (left), V-VI 
(middle), and white matter (right) shows that lower microglial densities in the prh mutants, and PLX5622 treatment significantly reduces microglial 
densities in all three areas. C High magnification (60x) images of smaller (more commonly found in WT) vs. larger (more commonly found in prh) 
amoeboid-shaped, IBA1+ (purple), microglia at P8. Scale bar = 10 μm. D Amoeboid-shaped IBA1+ microglia density in white matter. E Ratio of 
amoeboid-shaped microglia among total IBA1+ microglia in white matter. Stats: two-way ANOVA followed by Tukey’s test, n ≥ 10 in each group, 
****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05
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well (Fig.  2F, Sup Fig.  3A). Few CD86+ cells were also 
found in untreated and PLX5622-treated WT, total 
number of which was decreased with PLX5622 treat-
ment (Fig.  2E). These data indicate, PLX5622 effec-
tively depletes mature microglia and pro-inflammatory 

(CD86+) ones in the healthy and hydrocephalus neonatal 
brain, and mature (ApoE−) microglia are more sensitive 
to PLX5622-mediated microglial ablation.

Fig. 2  P8 microglial profiling with and without PLX5622 treatment. A P8 somatosensory cortex double stained with ApoE+ (green) and IBA1+ (red). 
Dotted lines indicate the border of grey (GM) and white matter (WM). Arrowheads: ApoE+ microglia. Scale bars = 100 μm. B The raw density of 
ApoE+ IBA1+ microglia is significantly reduced in PLX-treated mice compared to untreated mice. C Ratio of immature ApoE+ microglia out of total 
IBA1+ microglia in white matter. D P8 somatosensory cortex double stained with CD86 (green) and IBA1 (red). Dotted lines indicate grey matter 
layers and white matter layer. Arrowheads: CD86+ microglia. Scale bars = 100 μm. E Raw density of pro-inflammatory CD86+ IBA1+ microglia in 
white matter is significantly decreased in PLX-treated prh when compared to untreated mice. CD86+ IBA1+ microglial density is also reduced in 
PLX-treated WT when compared to untreated mice. F Ratio of pro-inflammatory CD86+ microglia out of total IBA1+ microglia in white matter. Stats: 
two-way ANOVA followed by Tukey’s test, n ≥ 10 in each group, ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05
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There is no improvement in white matter edema or grey 
matter thinning in PLX‑prh mice
To evaluate the effects of microglial ablation on brain 
size and general anatomy, we measured the dors-
oventral cortical thickness of cortical grey and white 
matter in comparable sagittal brain sections stained 
with DAPI (Fig.  3A). As we previously reported [22], 
untreated  prh mutants have significantly thinner grey 
matter (****p < 0.0001 vs untreated WT, Fig. 3B, and sig-
nificantly increased edematous white matter compared 
to untreated WT (**p = 0.0066 vs. untreated-WT Fig. 3B). 
Interestingly, in contrast to our study showing thera-
peutic benefits of the anti-inflammatory drug, bindarit 
[22], microglia ablation in postnatal hydrocephalus did 
not improve cortical thinning or white matter edema 
(Fig. 3B). Both control and PLX5622 treated mice within 
each genotype group (WT and prh) showed compara-
ble thickness of grey matter, white matter, and the total 
cortex (= grey matter thickness + white matter thickness) 
in histology (Fig. 3B). These data indicate that PLX5622 

mediated microglia ablation has no effect on white mat-
ter edema and thinning grey matter of prh hydrocephalus 
mutants.

PLX5622‑mediated microglial ablation negatively impacts 
postnatal myelination in healthy brains
It has been reported that myelination is significantly 
impacted early childhood hydrocephalus [67–69] and 
animal models of hydrocephalus. Therefore, we assessed 
the effects of PLX5622 microglia ablation on myelination 
with the mature oligodendrocyte and early myelination 
marker CNPase (2’, 3’ -cyclic nucleotide 3’ phosphodi-
esterase) (Fig.  4A, B). As we previously reported [22] 
CNPase staining showed a significant reduction of myeli-
nation in the P8 prh mutant mice (****p < 0.0001, Fig. 4A, 
B). We previously showed therapeutic benefits of an 
anti-inflammatory drug, bindarit, in hypomyelination 
phenotype of this mutant [22]. However, in contrast, the 
recovery from hypomyelination was not seen in PLX-
treated prh animals (Fig. 4A, B). Rather, in fact, PLX5622 

Fig. 3  Microglial ablation does not improve grey matter thinning or white matter edema in prh mutants. A PLX-treated WT and prh mutant 
somatosensory cortex stained with DAPI (blue). Longer white double-sided arrow represents grey matter (GM) thickness, and smaller arrow 
represents white matter (WM) thickness. Scale bar = 500 μm. B Grey matter thickness. Thinner in untreated-prh compared, not improved by 
PLX5622 treatment. White matter thickness. Thicker in untreated-prh, which is not improved by PLX5622 treatment. PLX5622 has no effect on 
the thickness of white matter in WT. Total cortical thickness (grey matter thickness + white matter thickness). No statistically significant difference 
between treatment or genotype groups. Stats: two-way ANOVA followed by Tukey’s test, n ≥ 10 in each group, ****p < 0.0001, ***p < 0.001, 
**p < 0.01, *p < 0.05
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treatment significantly decreased myelination in WTs to 
the level of prh mutants (****p < 0.0001, Fig. 4A, B). These 
data indicate that early postnatal microglial ablation with 
PLX5622 is not beneficial for treating hypomyelination in 
neonatal hydrocephalus and is detrimental to early mye-
lin maturation in healthy brains.

To further evaluate the effects of microglial abla-
tion on oligodendrocyte maturation in early postna-
tal age, we quantified the pan-oligodendrocyte lineage 

marker OLIG2 positive cells density in these animals. 
Untreated prh had significantly less OLIG2+ cells den-
sity compared to untreated WT (****p < 0.0001, Fig. 4C, 
D) as previously reported [22], which was not rescued 
by PLX5622 treatment. OLIG2+ cells density in the 
corpus callosum was significantly reduced in PLX-WT 
relative to untreated WT (*p = 0.011, Fig. 4C, D), indi-
cating that microglial ablation affected the overall num-
ber of oligodendrocyte lineage cells.

Fig. 4  PLX5622 does not improve myelination in prh, rather it decreases white matter myelination in WT. A Low magnification 10 × images of 
CNPase (purple) and DAPI (blue) stained sections including somatosensory cortex in P8 WT and prh mice with and without PLX5622 treatment. 
Arrows indicate the myelination of corpus callosum where quantification is performed. Scale bar = 1000 μm. CC: Corpus callosum. LV: Lateral 
ventricle. HP: hippocampus. B Myelination density in white matter (WM), is significantly lower in PLX-treated WT, untreated-prh, and PLX- treated 
WT, compared to untreated WT at P8. C Pan-oligodendrocyte lineage marker OLIG2 (green) and DAPI (blue) stained in P8 WT and prh brains with 
and without PLX5622 treatment. White dotted area indicates white matter (WM). Scale bar = 100 um. D OLIG2 positive cells density is significantly 
lower in PLX-treated WT (*p = 0.011) as well as in untreated prh (****p = 0.0001). Stats: two-way ANOVA followed by Tukey’s test, n > 10 in B, n > 8 in D 
in each group, ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05
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PLX‑treated prh mice have significantly larger ventricular 
volume
To see what effect, if any, PLX5622 treatment would 
have on the prh mutant’s CSF volume, we utilized 

three-dimensional (3D) volumetric T2-weighted MRI in 
ventricular volume analysis (Fig. 5A). Volumetric analy-
sis of CSF at P7-9 as a sum of the lateral ventricles, the 
third ventricle, the fourth ventricle, and the pineal recess, 

Fig. 5  Ventricular size is enlarged, and parenchyma volume is decreased in PLX-treated prh mutants. A 3D reconstruction of fluid sensitive MR 
images. Blue: lateral ventricles. Green: third ventricles. Red: fourth ventricles and pineal recesses. Scale bar = 2 mm. B (Left) Raw ventricular volume 
(sum of lateral ventricles, third ventricle, fourth ventricle, and pineal recess) and its ratio to total brain volume shows enlarged ventricles in prh 
mutant animals compared to WT animals, with PLX-treated prh mutants also having significantly larger ventricular volume when compared 
to untreated-prh. C 3D reconstruction of MR images showing total brain volume. The total brain is marked purple. Scale bar = 2 mm. D Raw 
parenchyma volume, calculated by subtracting ventricular volume from total brain volume, shows prh mutants have significantly smaller 
parenchyma compared to WTs. E (Left) Raw total brain volume shows no significant difference among the groups. (Right) Relative brain volume to 
body weight (BW) shows both untreated and PLX-treated prh mutants have significantly higher relative brain ratio compared to WTs. Stats: two-way 
ANOVA followed by Tukey’s test, n > 6 in each group, ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05
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revealed that prh mutants had significant ventriculomeg-
aly compared with WT mice (***p = 0.0002 vs. untreated-
WT as a raw volume (Fig.  5B left), ****p < 0.0001 vs. 
untreated-WT as relative ratio to the total brain volume 
(right), ***p = 0.0006 vs. untreated-WT as relative volume 
to body weight, Sup. Figure  8A, respectively). Remark-
ably, prh mutants treated from P3-P7 with PLX5622, 
had even further enlarged ventricular volume compared 
to their untreated counterparts in both raw and relative 
ventricular ratio to the total brain volume (*p = 0.0323 
vs. untreated-prh, *p = 0.0246 vs. untreated-prh, Fig.  5B 
left and right respectively). We recognize that the part 
of edematous white matter of prh mutants was included 
in fluid-filled ventricle volume in MRI-based data, yet, it 
had negligible impact on our parenchymal and ventricu-
lar volume calculation.

In total brain and the subsequent parenchyma vol-
ume analyses, we found prh mutation or PLX treatment 
did not change the total brain volume (Fig.  5E). There-
fore, we found that untreated-prh mutant had signifi-
cantly smaller parenchyma volume (Fig.  5D) and ratio 
due to the increase in CSF. We also find that untreated-
prh mutants have significantly smaller parenchyma 
volume to body weight ratio than untreated-WT mice 
(Fig.  5E right), which aligns with the thinner grey mat-
ter of untreated prh mutants in histology (Fig. 3B). In the 
total brain volume (= parenchyma + ventricle) evalua-
tion, we found untreated- and PLX-treated prh mutants 
have a greater total brain volume ratio to the body weight 
than WT mice (****p < 0.0001 vs. untreated/PLX-treated 
WT, Fig. 5E right). It reflected the fact that prh mutants 
around P7-9 showed larger brain to body ratio, which is 
due to the enlarged cranial volume reacting to the abnor-
mally increased CSF [22, 70]. Taken together, PLX5622-
mediated microglial ablation has a negative impact on 
prh hydrocephalic brains accelerating fluid accumula-
tion and inhibiting parenchymal growth during the early 
postnatal period.

Postnatal PLX5622 treatment did not affect the growth 
or survival of neonatal mice
The prh mutants shows lower body weight and have 
median survival of 10  days and typically do not survive 
to weaning ages [23, 51]. There were no significant dif-
ferences in both survival and body weight between 
treatment groups within each genotype (Fig.  6). Post-
natal PLX5622 treatment (P3-7) induced slightly lower 
body weight and 1 death out of 24 WT mice (Fig.  6B, 
A respectively). However, it did not affect body weight 
or survival of the prh mutants. In longitudinal growth 
analysis, we found significance between time and treat-
ment/genotype groups (****p < 0.0001 time × treatment/
genotype, Fig. 6B) showing that all groups grew over time 

regardless of the treatment, and there was no difference 
within the growing curve of each group, including tran-
sient change and average body weight change due to loss 
of sickly small mutants. These data indicate that transient 
microglial ablation with PLX5622 does not affect general 
growth and survival up to weaning age but also does not 
give a survival advantage in the prh mutant mouse line.

Microglia fully repopulated after discontinuation 
of PLX5622 by P20
It has been previously reported that after CSF1R inhibi-
tor removal, microglia proliferate and differentiate from 
the few remaining (immature) microglia within 3  days 
[52, 70, 73] and fully repopulate the adult and neonatal 
brain within 7–14  days [45, 53, 71]. Therefore, we ana-
lyzed microglia and anatomical phenotypes > 11  days 
after the last PLX5622 dosing and analyzed the effect of 
microglial repopulation at P18-20 (Fig.  7A). In the prh 
mutants that survived to P18-21, macro phenotypes 

Fig. 6  PLX-treated prh animals do not have survival or growth 
advantage over untreated-prh animals. A Survival rate of 
untreated-WT, PLX-treated WT, untreated-prh, and PLX-treated prh 
up to P20 (n ≥ 5 in each group) shows both untreated and PLX-prh 
mutants have significantly lower survival rate when compared to WTs 
(**p < 0.01, *p < 0.05, log-rank test). B Body weight analysis. There is no 
significant difference in the daily (P3-P20) weight in grams (g) among 
untreated-WT, PLX- treated WT, untreated-prh, and PLX- treated prh 
mice up to P20, (repeated measures of two-way ANOVA, followed by 
Tukey’s test)
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Fig. 7  Cessation of PLX5622 treatment successfully repopulates microglia by P20 in both WTs and prh mutants. A Low magnification 10 × images of 
IBA1 (red) stained in P20 WT and prh brains with and without PLX5622 treatment. Dotted lines indicate borders of cortical layers II-VI, V-VI, and white 
matter (WM). Scale bar = 100 um. B IBA+ microglial densities in cortical layers II-IV (top), V-VI (middle), and white matter (bottom) shows that thirteen 
days post withdraw of PLX5622 treatment allows successful microglial repopulation to levels of those comparable within the same genotype 
group in cortical grey matter (layers II-IV and V-VI) and white matter of the somatosensory cortex (n ≥ 3 in each group). C High magnification (60x) 
images of amoeboid-shaped IBA1+ (purple) microglia at P20. Scale bar = 10 μm. D Amoeboid-shaped IBA1+ microglia densities in white matter are 
comparable between treatment and genotype groups at P20 E Ratio of amoeboid-shaped microglia among IBA1+ microglia in white matter at P20
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include large doming of the head along with severe ven-
tricular enlargement (n > 5). These prh mutant mice are 
also visibly smaller (sometimes seeming malnourished) 
than their WT littermates, but microglial density was not 
much different from WTs (Fig.  7). Comparing to abla-
tion at P8, we found that microglia density was nearly 
fully recovered (~ 98%) in all layers (II-IV, V-VI, and 
white matter) of the somatosensory cortex in juvenile 
WTs (Fig. 7B top, middle, & bottom). In the prh mutants, 
microglial density was also recovered in all layers compa-
rable to the untreated mutant levels (n = 3,4). (Fig.  7B). 
We also increased percentage of rounded amoeboid-
shaped microglia among total IBA1+ microglia stayed 
moderately higher in the mutant groups than the WTs, it 
was significantly higher in prh mutants with repopulated 
microglia compared to WT groups (Additional file 1: Fig. 
S4A). Altogether, aligned with previous reports, we found 
microglia repopulate the postnatal brain within 2 weeks 
after the drug removal. The repopulation of microglia 
in prh mutants did not change the density and shapes of 
microglia in juvenile mutant brain.

Repopulated microglia profiles 13 days after PLX5622 
removal
We next evaluated the status of microglia after with-
drawal of PLX5622 in WTs and prh mutants at P18-21 
(Fig.  8) with ApoE and CD86. Through the staining 
of immature microglial marker ApoE (Fig.  8A-C), we 
observed no statistically significant difference in the den-
sity of ApoE+ microglia in neither the white matter (10–
230 cells per mm2, Fig. 8B) or grey matter (5–39 cells per 
mm2, Additional file 1: Fig. S5A) in all groups of the juve-
nile brains; although, both some treated and untreated-
prh mutants showed higher ApoE+ microglia density and 
ratio of white matter microglia relative to WTs (Fig. 8B, C 
respectively, Two-way ANOVA, main factor “genotype” 
F (1, 12) = 8.014, *p = 0.0152, Additional file 1: Table S1). 
In fact, the percentage of immature ApoE+ microglia in 
PLX-treated prh mutants in the white matter remained 
high compared to untreated/PLX-treated WT mice and 
untreated-prh mutants (**p = 0.0040 vs. untreated-WT; 
**p = 0.0047 vs. PLX-WT; *p = 0.0460 vs. untreated-prh, 
Fig. 8C, Additional file 1: Figure S5B).

Pro-inflammatory CD86+ microglia were not found 
in the juvenile WT groups with or without microglial 
repopulation in the white matter (Fig.  8D), whereas it 
was found in prh mutants with and without microglial 
repopulation (0–225 cells per mm2, Fig.  8E). Therefore, 
the hydrocephalus phenotype affected the presence of 
CD86+ microglia in white matter (Two-way ANOVA, 
main factor “genotype” F (1, 15) = 9.434, **p = 0.0078). 
Although, the total CD86+ cell density was not differ-
ent between untreated-prh vs PLX-prh, percentages of 
CD86+ microglia in white matter were higher in PLX-
prh, but not in untreated-prh, compared to WT mice 
(**p = 0.0076 vs. untreated-WT; **p = 0.0035 vs. PLX-WT, 
Fig. 8F, Additional file 1: Figure S6A). This data indicated 
that repopulated microglia does not only induce the rela-
tively immature status of microglia (Fig.  2C) but may 
exacerbate the immature and pro-inflammatory status by 
repopulation in developing hydrocephalic brains.

Myelination recovery 13 days after PLX5622 cessation
Statistically, the current PLX treatment and with-
drawal mildly affects the myelination level of the cor-
pus callosum at P18-21 (Two-way ANOVA, F (1, 
20) = 8.680 **p = 0.0080), After withdrawing PLX5622 
for 11–13  days, myelination was recovered in juvenile 
WT mice to comparable levels as untreated  WT mice 
(Fig.  9, p = 0.9275). The untreated prh mutant showed 
numerically, but not statistically, lower myelination than 
untreated WT in post-hoc analysis with Tukey’s test 
(Fig.  9: Untreated-WT 84.4 ± 13.7%, n = 7; untreated-
prh, 55.0 ± 24.3%, n = 5, Two-way ANOVA, post hoc 
p = 0.0919). The p-value of 0.0919 in post hoc test was 
considered a statistical trend that in two-group com-
parison between them with student t-test have reached 
significance (t-test; *p = 0.037). PLX-mediated abla-
tion and repopulation of microglia significantly affected 
the myelination of prh mutants (Fig.  9: PLX-prh, n = 6, 
13.5 ± 13.6%, Two-way ANOVA, post hoc *p = 0.0167). In 
general, these data indicated that the PLX5622 treatment 
(P3-7, 50 mg/kg) in the prh mutant did not improve mye-
lination, if not worsened. Indeed, microglia repopulated 
prh had statistically significantly lower levels of myeli-
nation than WT mice (****p  < 0.0001 vs. untreated-WT; 
***p < 0.001 vs. PLX- WT, Fig.  9B), which implied that 

(See figure on next page.)
Fig. 8  Characteristics of microglia after repopulation in the white matter of WT and prh brains at P20. A P20 somatosensory cortex double 
stained with ApoE (green) and IBA1 (red). Dotted lines indicate the border of grey (GM) and white matter (WM). Arrowheads: ApoE+ microglia. B 
The raw density of immature ApoE+ Iba1+ microglia in white matter shows no significant difference in density between treatment or genotype 
groups in white matter at P20 (two-way ANOVA followed by Tukey’s test, n ≥ 3 in each group). C Ratio of immature ApoE+ microglia out of total 
IBA1+ microglia in white matter. D P20 somatosensory cortex double stained with CD86 (green) and IBA1 (red). Dotted lines indicate grey matter 
(GM) layers and white matter (WM) layer. Arrowheads: CD86+ microglia. E Raw density of pro-inflammatory CD86+ IBA1+ microglia in white matter 
shows no significant difference between treatment and genotype groups at P20 (two-way ANOVA followed by Tukey’s test, n ≥ 3 in each group). F 
Ratio of pro-inflammatory CD86+ microglia out of total IBA1+ microglia in white matter. Scale bars: 100 μm.
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Fig. 8  (See legend on previous page.)
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early PLX5622 treatment left a notable negative impact 
on myelination in the neonatal hydrocephalic brain. This 
data is indicative of the slower progress of myelination in 
prh, which is not improved by the microglial repopula-
tion. Thus, myelination in the healthy neonatal brain can 
be recovered  after microglial ablation. However, in case 
of prolonged hydrocephalus and a low-grade pro-inflam-
matory state, this recovery does not occur.

Discussion
Neuroinflammation is commonly described in perinatal 
hydrocephalus patients and animal models as a form of 
elevated pro-inflammatory cytokines in the CSF or glio-
sis, despite little involvement of peripheral immune cell 
infiltration [10, 19–32]. In this study, we attempted to 
deplete “pro-inflammatory” microglia in the prh mutant 
and tested its potential benefit for supporting prenatal 
myelination and lessening the severity neonatal hydro-
cephalus. We used a potent and selective CSF1R inhibitor, 
PLX5622, to achieve faster and more efficient microglial 
ablation within 3  days of treatment than PLX3397 [73]. 
We found substantial (89%) microglial ablation in both 
pro-inflammatory and homeostatic microglial in a robust 
neonatal hydrocephalus mouse model as well as in WT. 
However, the elimination of microglia in the neonatal 
hydrocephalus brain caused no improvement of edema 
or grey matter thinning, rather it worsened CSF volume 
and cortical thinning in P7-9, and left hypomyelination 
phenotype in juvenile (P18-21) mutant. We report that 

PLX5622 is a reliable method for ablating microglia in 
the early postnatal mouse brain; however, it can be harm-
ful during the neonatal stage in both WT and in hydro-
cephalic mouse brains. Although our data is limited by 
small sample size in juvenile mutants, PLX5622-medi-
ated microglial ablation did not bring positive outcomes 
in neonatal hydrocephalus. The delayed myelination in 
the PLX-treated WT brain highlight the critical func-
tions of myeloid cells in early postnatal myelination, as 
it was previously shown in the prenatal [53], early post-
natal CSF1R inhibitors [44] application, or genetic loss of 
CSF1R [44, 74, 75], where parenchymal microglia but not 
brain boarder macrophage ablated.

Neonatal hydrocephalus has significant negative effects 
on perinatal myelination in patients [76] and animal 
models [77] regardless of its etiology. Hydrocephalus-
induced hypoxia reduces cerebral blood flow, causing 
neurodevelopmental delay or nerve/brain injury, which 
may directly or in-directly affect oligodendrocytes 
and their precursors [30, 78]. The pro-inflammatory 
response of the microglia may also indirectly affect 
oligodendrocyte development or function and medi-
ate the hypomyelination phenotype [79] in neonatal 
hydrocephalus. Consistent with our current and previ-
ous findings in this model, elevated pro-inflammatory 
cytokine levels and glial activity are documented in the 
CSF and brains of patients with neonatal hydrocephalus 
[38–40, 80–82]. Although we did not study the direct 
effect of PLX5622 on hypoxia/ischemia, future studies 

Fig. 9  Myelination is recovered in WTs after microglia repopulation at P20, but it worsens hypomyelination phenotype in prh mutants. A Low 
magnification 4 × images of CNPase (purple) and DAPI (blue) stained in P20 WT and prh brains with and without PLX5622 treatment. Arrows 
indicate the myelination in corpus callosum (CC) where myelination is quantified. Scale bar = 1000 μm. LV: Lateral ventricle. HIP: Hippocampus, B 
Quantification of myelination density at P18-21 shows that myelination is comparable between PLX-treated WT mice within thirteen days after 
withdrawal of PLX5622 treatment. PLX-treated prh animals has significantly lower myelination density than untreated prh mutants. P18 (triangles), 
P20 (circles), and P21 (rectangle). Stats: two-way ANOVA followed by Tukey’s test, n > 5 in each group, ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05
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of analyzing microglia-dependent pro-inflammatory 
cytokines in hydrocephalus may elucidate further mecha-
nisms disturbing myelinogenesis in neonatal hydroceph-
alus. Our findings did not support the noxious effects 
of pro-inflammatory microglia in neonatal hydrocepha-
lus, rather highlighted the importance of homeostatic 
brain myeloid cells in myelination that are also affected 
by PLX5622. The process of myelin biogenesis, includ-
ing oligodendrocyte maturation and myelination, occurs 
in the third trimester of gestation in humans [67–69] and 
the first 1–2  weeks of the postnatal period in rodents 
[83] along with microglial maturation in grey matter and 
the presence of amoeboid-shaped axon tract-associated 
microglia (ATM) in white matter [84–86]. Therefore, 
our model may reflect how perinatal myelinogenesis gets 
perturbed by loss of microglial functions in hydrocepha-
lus. Myeloid cells in healthy developing white matter are 
essential for driving myelination via region-dependent 
roles in oligodendrocyte survival, differentiation, and 
myelin  production [79]. The ATM provide trophic fac-
tors, such as IGF1 that can promote the maturation and 
survival of oligodendrocytes [87]. Recent studies have 
highlighted specific functions of perinatal microglia 
in eliminating nascent myelin deposits [88] and excess 
oligodendrocyte precursor cells (OPCs) [89], that are 
critical for myelination. In fact, microglia ablation with 
prenatal PLX5622 [53], or postnatal BLZ945, or genetic 
loss of Csf1r gene [44] results in impaired myelination 
in early postnatal mice. Therefore, further studies inves-
tigating the developmental status of oligodendrogenesis 
in the prh mutant may elucidate the impact of neonatal 
hydrocephalus on myeloid cell guided myelination.

We previously reported that the anti-inflammatory 
NF-kB inhibitor, bindarit, had therapeutic benefits in 
promoting myelination in the prh model [22].  Bindarit 
reduced pro-inflammatory amoeboid-shaped micro-
glia and rescued the cell density of homeostatic micro-
glia (22). In contrast, the neonatal PLX5622 treatment 
removed both homeostatic and pro-inflammatory mye-
loid cells and left mostly immature ApoE+ ones with no 
ramified processes throughout the cortical and subcorti-
cal regions in the prh mutants and WTs evaluated at P8. 
Therefore, our data suggests that loss of resident myeloid 
cells and their homeostatic functions in the neonatal 
period, rather than a gain of pro-inflammatory microglia, 
may greatly contribute to hypomyelination in neonatal 
hydrocephalus.

Motor and neuropsychological phenotypes, such as 
hyperactivity, uncoordinated movements, epilepsy, spas-
ticity, or anxiolytic-like behaviors are seen in rodents 
[53, 74, 90] and humans [75] without microglia during 
brain development. These may reflect the lack of micro-
glia-dependent oligodendrocyte functions [79] and/or 

neural circuit formation early in life [91]. As neonatal 
hydrocephalus causes similar motor and neurological 
problems, the development of therapeutic methods to 
enhance the survival or development of perinatal homeo-
static microglia promises to be an attractive approach 
to better support brain development in neonatal 
hydrocephalus.

In alignment with a previous report using BLZ945 
[44], here we found that microglial ablation in healthy 
newborn mice affected myelination in the corpus callo-
sum of all PLX5622 treated mice that were evaluated at 
P8. The effects of microglia on oligodendrocyte matu-
ration or myelination are likely specific to development 
as microglial ablation in the adult brain does not affect 
oligodendrocyte and its precursor cell densities [44] nor 
cognitive function [43, 45, 92]. Different CSF1R inhibi-
tors may directly affect oligodendrocyte and/or OPC 
survival; however, it is likely that the PLX5622 dose we 
used here (50 mg/kg) has a minimal direct effect on the 
oligodendrocytes due to its higher specificity to CSF1R 
compared to other kinases such as PDGFRs / KIT (IC50 
CSF1R: 10  nM: IC50 PDGFRβ, PDGFRa, KIT: > 1  μM) 
[93] or PLX3397 (IC50 CSF1R: 20 nM; IC50 KIT: 10 nM), 
and similar levels to BLX945 (IC50 CSF1R: < 1 nM; IC50 
PDGFRβ: > 1 μM) [94]. Moreover, previous studies show 
that cultured oligodendrocytes and OPCs are tolerant 
to CSF1R inhibitors [73]. Therefore, the direct effects of 
PLX5622 on oligodendrogenesis via modulating their 
PDGFRa or other kinases in neonatal mouse brains 
are likely minimal. Of note, our initial attempt to use 
PLX3397 (40 mg/kg, subcutaneously administered three 
times at P2, P4 & P6, analysis at P8, data not shown) to 
deplete microglia in neonatal mice was unsuccessful. It 
resulted in subtle and variable microglial ablation, which 
likely reflects its lower potency compared to that of 
PLX5622 reported in adult microglial ablation [95].

Recent studies indicate that microglia can repopulate 
through the few immature Nestin +microglia that survive 
CSF1R inhibitor treatment in adults [71, 72] and neonatal 
[53] brains. The microglia repopulation speed is propor-
tional to the extent of microglial depletion [96]. Although 
we did not evaluate the Nestin levels in our remaining 
or repopulated microglia, we found full repopulation of 
microglia 11–13  days after the withdrawal of PLX5622 
in juvenile WT and prh mice and speculate that cortical 
repopulating microglia are proportional to the number 
of surviving immature microglia and respond to hydro-
cephalus. In studies of adult brain disease models, such 
as Alzheimer’s disease [45] or neuronal injury [49], the 
microglial replacement had beneficial effects on cognitive 
functions [48] or behavioral deficits [49]. However, in our 
current study, although it was not statistically significant, 
the higher presence of cellular and molecular features 
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of immature/activated microglia, i.e., amoeboid/round 
shape, expressing ApoE and CD86, and lower presence of 
mature ramified microglia. Therefore, we conclude that 
microglial replacement in the neonatal hydrocephalus 
may not improve myelination. It rather appears to have 
long detrimental effects, further impairing myelination 
during the first 3 postnatal weeks. Remarkably, we found 
that myelination was able to fully recover to the normal 
level in the juvenile WT mice after transient neonatal 
PLX5622 treatment, which suggested temporal chemi-
cal microglial ablation in healthy developing brain may 
have minimal long-term  effects in brain development. 
At P20, 13 days after drug withdraw, microglia densities 
are comparable to untreated WT and prh mutant brains, 
respectively, in large. However, due to the high mortal-
ity of the prh mutants, the small number of P20 animals 
used in this study remains the limitation of this study, 
and the trend of increased ameboid microglia in the 
both untreated and PLX-treated mutant could be further 
addressed. Taken together, our findings suggest critical 
developmental and functional roles of microglia, particu-
larly in myelination, in neonatal hydrocephalus.

Previous studies have reported causal effects of neu-
roinflammation in progressing ventricular enlargement 
via activating SPAK1-NKCC1 signal-mediated hyper-
secretion of CSF from the choroid plexus in the post-
hemorrhagic hydrocephalus model [99] or via impairing 
ependymal maturation and ciliogenesis in GFAP.tTA/
(tetO)7.IKK2-CA [33] and Vps35-knockout mouse mod-
els [42]. Conversely, in our prh hydrocephalus mouse 
model, removal of microglia-mediated inflammation 
and perinatal microglia  by PLX5622  did not improve, 
but rather, accelerated the hydrocephalus phenotype. 
In our study, we found that the periventricular edema 
was worsened by PLX5622 treatment. As shown in two 
recent studies, subtypes of microglia also have roles in 
brain vascular function; inflammation can recruit vessel-
associated microglia that disrupts blood–brain barrier 
[100], and capillary-associated microglia are important 
for the reactivity of capillary control of cerebral blood 
flow [101]. Therefore, further investigation of the cause of 
periventricular edema and its contribution to the ventric-
ular dilation in PLX5622 treated hydrocephalus model is 
important.

Recently, it was reported that hydrocephalus caused by 
the loss of the ependymal Vps35 gene is reversible with 
PLX3397-mediated microglial ablation [42]. However, in 
our study, we were unsuccessful in ablating a large num-
ber of microglia in neonatal brains with PLX3397. Fur-
ther studies on the differences in the chemical properties 
of PLX3397 or sensitivity to CSF1R inhibitors in different 
strains of mice may also be needed.

Conclusion
In the current study, we demonstrate that postnatal abla-
tion of microglia causes ventricular enlargement and 
does not improve hypomyelination in hydrocephalus 
mutant mice. Neonatal ablation also did not contribute 
to improving myelination at the juvenile stage. Therefore, 
our findings demonstrate the importance of supplying 
healthy microglia for the treatment of neurodevelop-
mental problems in neonatal hydrocephalus. Our current 
study shows microglia are necessary for managing CSF 
and parenchymal volume and for supporting myelination 
in neonatal hydrocephalus. As we continue to pursue 
better neurological outcomes for hydrocephalus patients 
it will be important to evaluate and understand the 
molecular effects of drugs like PLX5622 in healthy brain 
development. Appropriate translational therapeutic tar-
gets that do not completely ablate the microglial response 
should be considered in future work.
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Additional file 1: Figure S1. PLX treatment increases the percentage of 
amoeboid-shaped microglia in white matter at P8. A PLX-treated mice 
have a higher percentage of rounded amoeboid-shaped microglia com-
pared to untreated mice at P8, quantified using IBA1+ microglial images 
taken with 10 × objective lens. Figure S2. PLX increases percentages but 
reduces density of immature ApoE+ microglia in grey matter at P8. A 
ApoE+ microglial density in cortical grey matter density at P8, quantified 
using ApoE and IBA1 double-stained sections taken with 10 × objec-
tive lens. Untreated prh, PLX-WT and PLX-prh have significantly lower 
raw densities of immature ApoE+ IBA1+ microglia than untreated-WT 
at P8. B Both PLX-WT and PLX-prh have a significantly higher percent-
age of ApoE+ IBA1+ immature microglia in white matter after PLX5622 
treatment compared to untreated-WT and untreated-prh, respectively, 
and 100% of microglia that survives PLX5622 treatment is ApoE+. 33 
C Both PLX-WT and PLX-prh have a significantly higher percentage of 
ApoE+ IBA1+ immature microglia in grey matter after PLX5622 treatment 
compared to untreated-WT and untreated-prh, respectively.. Figure S3. 
Untreated-prh have significantly higher percentages of pro-inflammatory 
CD86+ microglia than WTs and PLX-prh at P8. A Percentage of CD86+ 
IBA+ double-positive microglia in white matter at P8, quantified using 
CD86 and IBA1 double-stained sections taken with 10 × objective lens. 
The percentage of CD86+IBA1+pro-inflammatory microglia in untreated 
prh is significantly increased in the white matter compared to untreated-
and PLX-WT. PLX5622 treatment significantly reduces the percentage of 
CD86+IBA1+microglia in prh. Figure S4. Microglial repopulation increases 
percentage of amoeboid-shaped microglia in white matter of prh mutants 
at P20. A PLX-prh mutants have a significantly higher percentage of 
amoeboid-shaped microglia compared to untreated and PLX-WT at 
P20 after microglial repopulation, quantified using IBA1stained animals, 
with 10 × objective lens. Figure S5. Microglial repopulation increases 
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percentages of immature ApoE microglia in white matter of prh at P20. 
A There is no statistically significant difference among groups in the per-
centages of immature ApoE+ IBA1+ double-positive microglia out of total 
IBA1+ microglia in grey matter at P20 after repopulation, measured from 
low power 10 × cortex photos of ApoE and IBA1 double-stained animals. 
B PLX-prh mutants have a significantly higher percentage of immature 
ApoE+ IBA1+ microglia in white matter than untreated-WT, PLX-WT, and 
untreated prh after repopulation at P20. C Percentage of immature ApoE+ 
IBA+ double-positive microglia in grey matter at P8, measured from low 
power 10 × cortex photos of ApoE and IBA1 double-stained animals. There 
is no statistically significant difference among groups in the percent-
age of immature ApoE+ IBA+ double-positive microglia in grey matter 
at P20 after repopulation. Figure S6. PLX-prh have significantly higher 
percentages of pro-inflammatory CD86+ microglia after repopulation at 
P20. A Percentage of CD86+IBA+ double-positive microglia out of total 
IBA1+ microglia in white matter at P20 after repopulation, is significantly 
increased in PLX-prh, compared to untreated-WT and PLX-WT. Figure 
S7. Prh mutants weigh less than WTs at P8. A Body weight in gramsof the 
mice at P8. Both untreated-prh and PLX-treated prh weigh significantly 
less than WTs. Figure S8. Ventricle and parenchyma volume at P8 normal-
ized to body weight. A Ventricular volumes normalized to body weight 
in grams at P8 shows that untreated-prh and PLX-prh mutants have 
significantly enlarged ventricles compared to WT mice. B Parenchyma vol-
ume normalized to body weight at P8 shows that PLX-treated mice have 
significantly smaller parenchyma compared to their untreated control 
groups. Table S1. The two-way ANOVA sstatistical analysis results.
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